6 research outputs found

    Wind Turbine Active Fault Tolerant Control Based on Backstepping Active Disturbance Rejection Control and a Neurofuzzy Detector

    Get PDF
    © 2023 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Wind energy conversion systems have become an important part of renewable energy history due to their accessibility and cost-effectiveness. Offshore wind farms are seen as the future of wind energy, but they can be very expensive to maintain if faults occur. To achieve a reliable and consistent performance, modern wind turbines require advanced fault detection and diagnosis methods. The current research introduces a proposed active fault-tolerant control (AFTC) system that uses backstepping active disturbance rejection theory (BADRC) and an adaptive neurofuzzy system (ANFIS) detector in combination with principal component analysis (PCA) to compensate for system disturbances and maintain performance even when a generator actuator fault occurs. The simulation outcomes demonstrate that the suggested method successfully addresses the actuator generator torque failure problem by isolating the faulty actuator, providing a reliable and robust solution to prevent further damage. The neurofuzzy detector demonstrates outstanding performance in detecting false data in torque, achieving a precision of 90.20% for real data and 100%, for false data. With a recall of 100%, no false negatives were observed. The overall accuracy of 95.10% highlights the detector’s ability to reliably classify data as true or false. These findings underscore the robustness of the detector in detecting false data, ensuring the accuracy and reliability of the application presented. Overall, the study concludes that BADRC and ANFIS detection and isolation can improve the reliability of offshore wind farms and address the issue of actuator generator torque failure.Peer reviewe

    Influence of Inoculums/Substrate Ratios (ISRs) on the Mesophilic Anaerobic Digestion of Slaughterhouse Waste in Batch Mode: Process Stability and Biogas Production

    Get PDF
    AbstractBatch digestion experiments were conducted to determine the effects of inoculums/substrate ratio of three different ratios (ISRs) 0.3, 0.5 and 1. The substrate chosen in this study was slaughterhouse waste from Adrar city (south west of Algeria). The inoculation was made by sludge issued from wastewater treatment plant. During this study, several parameters of anaerobic digestion were measured, such as pH, VFA, AT and volume of the produced biogas. pH variation and VFA/TA values have shown high stability of anaerobic digestion process

    Wind Turbine Active Fault Tolerant Control Based on Backstepping Active Disturbance Rejection Control and a Neurofuzzy Detector

    No full text
    Wind energy conversion systems have become an important part of renewable energy history due to their accessibility and cost-effectiveness. Offshore wind farms are seen as the future of wind energy, but they can be very expensive to maintain if faults occur. To achieve a reliable and consistent performance, modern wind turbines require advanced fault detection and diagnosis methods. The current research introduces a proposed active fault-tolerant control (AFTC) system that uses backstepping active disturbance rejection theory (BADRC) and an adaptive neurofuzzy system (ANFIS) detector in combination with principal component analysis (PCA) to compensate for system disturbances and maintain performance even when a generator actuator fault occurs. The simulation outcomes demonstrate that the suggested method successfully addresses the actuator generator torque failure problem by isolating the faulty actuator, providing a reliable and robust solution to prevent further damage. The neurofuzzy detector demonstrates outstanding performance in detecting false data in torque, achieving a precision of 90.20% for real data and 100% for false data. With a recall of 100% , no false negatives were observed. The overall accuracy of 95.10% highlights the detector’s ability to reliably classify data as true or false. These findings underscore the robustness of the detector in detecting false data, ensuring the accuracy and reliability of the application presented. Overall, the study concludes that BADRC and ANFIS detection and isolation can improve the reliability of offshore wind farms and address the issue of actuator generator torque failure

    Value of biomarkers for predicting immunoglobulin A vasculitis nephritis outcome in an adult prospective cohort

    No full text
    International audienc

    Abstracts of 1st International Conference on Computational & Applied Physics

    No full text
    This book contains the abstracts of the papers presented at the International Conference on Computational & Applied Physics (ICCAP’2021) Organized by the Surfaces, Interfaces and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria, held on 26–28 September 2021. The Conference had a variety of Plenary Lectures, Oral sessions, and E-Poster Presentations. Conference Title: 1st International Conference on Computational & Applied PhysicsConference Acronym: ICCAP’2021Conference Date: 26–28 September 2021Conference Location: Online (Virtual Conference)Conference Organizer: Surfaces, Interfaces, and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria

    OXA-48-like carbapenemases producing Enterobacteriaceae in different niches

    No full text
    corecore